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ABSTRACT 

A generalization of tridiagonal matrices is considered, namely treediagonal 
matrices, which have nonzero off-diagonal elements only in positions where the 
adjacency matrix of a tree has nonzero elements. Some properties of treediagonal 
matrices are given, and their inverses are characterized and shown to have an 
interesting structure. 

1. TREEDIAGONAL MATRICES 

We recall a few elementary graph-theoretical terms (see, e.g., [l]). Let I 
denote a graph with vertex set ?f= { 1,2,. . . , N} and edge set G, which 
consists of (unordered) pairs of vertices. A subgraph of I is a graph with 
vertex and edge sets which are subsets of ?Tand G. A subgraph is a spanning 
subgraph of I if its vertex set is ‘Valso. If r is connected and acyclic, then r is 
said to be a tree. Let vi denote the valence (or degree) of a vertex i. Vertices 
of valence 1 are termed end vertices, and those of valence 22 are termed 
interior. The neighborhood of iE?Tis the set N(i)={j~?f; {i, i} E&}. 

Throughout this paper we assume I is a tree. Further, we consider N-by-N 
matrices whose rows, and columns, are labeled by the vertices of v. We 
define a matrix A to be treediagonal (or more explicitly r-treediagonal) if the 
matrix elements Aii of A are such that Aii=O for i#i and {i, j} @G. Such 
matrices and the associated inversion algorithms have already been studied 
[2-41. Clearly, if r is a linear path, then I is equivalent via a simultaneous 
permutation of row and column indices to a tridiagonal matrix; indeed, A is 
explicitlytridiagonalif&={{i,i+l}; i=l toN--1). 

Treediagonal matrices have a number of properties and characteristics 
reminiscent of the more special tridiagonal matrices. Indeed, most (but not 
all) of the results we obtain are already known [5, 61 for the tridiagonal case. 
In this section our results involve especially simple extensions of properties of 
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tridiagonal matrices and are presented without detailed proof. The main 
results come in Sections 3 and 4 and are extensions of recent work by Barrett 

PI. 
Since an N-vertex tree has N- 1 edges (as is readily seen by an induction 

argument), one sees 

PROPOSITION 1. r-treediagonul matrices can have up to but no more than 
2( N - 1) rwnzero offdiagonal elements. 

If {ii,&,..., i,} E?T, then let I(il,..,,i,) denote the graph obtained from I 
on deleting the vertices ii , . . . , i, and their incident edges; further let A ( i ,, , i ) 
denote the determinant obtained from A on deleting rows and colum& 
21”“, i,, and let A denote det A. Now using the familiar expansion of a 
determinant in minors (first along row i and then for the second term along 
column i), one obtains 

PROPOSITION 2. lf A i.s a treediagonul matrix with i an end vertex and i 
its neighbor, then 

Here ACi) and ACi,i) are determinants for ICi,- and ICi,i)-treediagonal 
matrices, so that this proposition could be iterated. Indeed, it could be used to 
evaluate sequences of determinants Aci,,iz,,,,,i,,j, m=l to N-l, with 
* . 
aI, a2,. . . , i,_ 1 each an end vertex after removing preceding vertices. Then just 
as in the well-known [3] Givens and Householder “matrix diagonalization” 
algorithms, the sign-change counting method for localizing eigenvalues of 
tridiagonal Hermitian matrices may be applied to Hermitian treediagonal 
matrices. Proposition 2 also leads to 

PROPOSITION 3. lf A is a treediagonal matrix, then its determinant is 
given as 

A= 2 (-1)“” n AiiAii II A,,, 
YCT (i,i}EE’ (k: q=o) 

where the sum is over all spanning subgraphs y of r such that all vertices 
have valence 0 or 1. Also 6 y is the edge set of y, JG y 1 the number of edges in 
G y, and VI the valence of the kth vertex in y. (Zf either of the products in this 
equation is vac~us, the product is taken to be unity.) 

Also a ready consequence of Propositions 2 and 3 is 
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PROPOSITION 4. If A is a treediagonal matrix, then its permanent is given 

as 

where the sum is as in Proposition 3 and a is a matrix with 

Aii = 
+A,,, i>i, 

-A,,, i<i. 

A finite constructive method for transforming a general square matrix to a 
given general r-treediagonal form does not yet seem to be known. 

2. INVERSES OF TREEDIAGONAL MATRICES 

For a given tree r let [i, i] denote the (unique) path from vertex i to i; 
that is, 

[i,,i,]=(i,,iz,...,i,), where {i,,i,+,}E&, a-lton-I. 

We say ke [il, i,] if k is one of these i,. For a l’-treediagonal matrix A with 
[il, i,] as above, define 

1, n =l, 

~~~Ai,zi~+,, n>2 . 

Further let I[il, i,]l =n-1 denote the length of [il, i,]. 

THEOREM 1. If A is a nonsingular treediagonul matrix, then 

Further, if TCLi,ilj is disconnected, then A,,i, ilj factors, with each factor being 
the determinant of the matrix for the associated component of rC,i,ilj. 
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Proof We use the standard formula 

(A-‘)ii= (-:)iiidet Aciii), 

where Aoii) denotes the matrix obtained on deleting the ith row and ith 
column of A. Consider the matrix A’ which is the same as A except that its 
(i, i)th element is replaced by Aii = 1. Now 

det A’= z (-l)*k~lAL,ikj 
n 

where the sum is over all IV! permutations T, (- 1)” is the parity of T, and 
r(k) is the image of k under T. Then since the determinant function involves 
sums over products with exactly one element from each row and column, we 
see that (- l)‘+idet Acili) is simply the portion of the n-sum above for which 
r(i)=i. For a T giving a nonzero contribution, each cycle in T must 
correspond to a cycle of nonzero elements in the graph r’ of A’. Here r’ 
includes {i, i} in its edge set, but is otherwise the same as I’. For the T giving 
a nonzero contribution we then seek a path in IY from i to i, and 7~ must 
involve a cycle cyclically permuting the vertices of this path [i, i]. Since the 
path length is I[i, i]/, the parity of this cycle is (- l)i[i*ill. Hence 

(- l)‘+‘det Acili) = (- l)“i”l’p [i, i] z (- 1)“’ n A,,,(,,, 
n’ k@[i,il 

where T’ is restricted to permutations of vertices other than those in [i, i]. 
Since this 7~‘-sum yields just det A(,,, il), the first part of the theorem is 
established. The second part of the theorem is seen on noting that the disjoint 
components of I’~Li,il) correspond to disconnected blocks of the matrix ob- 
tained from A on deleting the rows and columns of [i, i]. n 

THEOREM 2. Let A be a treediagonal matrix with Acs, ZO, for all 5 CT 
associated with a connected subtree of r. Define generalized continued 
fractions via the recurrence relations 

AiiAii 

f;iji 

$i ,,..., i,,,)i =Aii - I2 

AiiAii 

&i ,,..., i ,,,, i)i’ 
m>l, 

jEN(i). j+i,,, 
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where [il,i,] is a path in I, {im, i} E&, and where termination points are 
reached whenever the j-sum becomes vacuous. Then A-’ is given as 

(A-‘),,= l/J, 

This may be proven using Theorem 1 and noting that the ratio A/Aci, in 
place of f, and the ratios Aci ,,,,,, i,,/‘A,il ,,.,, i,,,i) in place of $i ,,,,,, i,,)i satisfy 
the same recurrence relations, as may be seen by expanding the numerators 
along row i. There is another proof 133 which follows earlier work [7] relating 
tridiagonal matrices, their inverses, and ordinary continued fractions. Further 
analogies between the generalized continued fractions of Theorem 2 and 
ordinary ones seem to be little developed. 

3. TREEANGLE PROPERTY FOR MATRICES 

For a given tree l? an N-by-N matrix R satisfies the treeangle (or more 
explicitly I-treeangle) property if for every i, i, k E ‘V with k E [i, j], 

RiiR,, =RikRki. 

If I is a path, this treeangle property, along with the requirement that 
R,, #O for interior vertices, yields Barrett’s [2] triangle property. 

If R satisfies the treeangle property and Rii #O for interior vertices, 
repetitive use of the treeangle property gives 

n-1 R. 

Ri,i,=Ri,i, g *, 
a-2 Rioi, 

[i,,i,]=(i,,iz ,..., i,), n23. 

Note that Rili, has a visual interpretation as a ratio of the product of the 
elements of R labeled by the (directed) edges of the path [il, i,] to the 
product of the elements of R labeled by the interior vertices of the path. 
Hence all the elements of R are determined from a knowledge of the diagonal 
elements and those 2( N- 1) off-diagonal elements Rii for which {i, j} E&. 

In the following we utilize the definition 

dii =RiiRii -R,,R,,. 
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Further we let Z denote the N-by-N identity matrix, v denote the determi- 
nant of R-XI, and for n= 1,. . . , N- 1, v Ci ,,,,,, i,) denote the determinant of 
the matrix obtained from R -XI by deleting rows and columns i,, . . . , i,. 

THEOREM 3. Zf R satisfies the treeangle property and if i is an end vertex 
with Rii # 0 for the vertex i adjacent to i, then 

RiiRii RijRii 2 
Rs Rfi 

x v (i,i)’ (3.1) 
ii 

Proof. We let R’ = R -XI and expand by minors along the ith row: 

‘v=(R,,-x)~(~,+ x (-l)ifkRi,detR;i,k). 
k#i 

Now we use the treeangle property to replace Rik by RiiRik /R,,, and then 
rearrange the equation to obtain 

Rij 
V=(Rii-x)vCi,+~ -RiidetR;i,i)+(-l)ifirdetR;i,i, 

11 

+ z (- l)i+kR;kdet Rkilk) . 

k I 
(3.2) 

Here the last k-sum is just the determinant of the matrix with row i replaced 
by row i, and hence gives zero. Next we expand 

det R{+, = 2 (- l)‘+‘+‘Rlidet Riilliij, 
Z#i 

where Riirliij denotes the matrix obtained from R’ on deleting rows i, I and 
columns i, i. Further, here 6=0 if Z<iCi or Z>i>j, and 6~1 otherwise. Now 
we replace Rli by Rti Rii /Rii and rearrange the equation to obtain 

Rji 
detR;i,i,=x (-1) 

1 
ifi+lxdet Riiilii) + 2 (- l)‘+‘+‘R&det R;il,ii) . 

11 lfi I 

Expanding det Rtilij by minors along the ith column, one sees that the last 
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Z-sum is just (- l)i+i+l det IS;+). Substituting back into Equation (3.2) yields 

Equation (3.1). 
Remarks similar to those following Proposition 2 apply. Further, if one 

specializes Theorem 3 to x= 0 and applies it in an iterative manner one 

obtains 

COROLLAFlY. Zf R satisfies the treeangle property with R,, #O for inter- 

ior vertices k E V, then 

detR= I, jftsdiikQl’~~vk, 
1, 

where Rtk is understood to always equal 1. 

This result is given by Barrett [6] for the special case of the triangle 

property. 

4. TREEDIAGONALITY AND THE TREEANGLE PROPERTY 

The interrelation between treediagonal and treeangle properties found in 
this section are again extensions of Barrett’s work [6]. 

THEOREM 4. If a mnsingular matrix R satisfies the treeangle property 
with R,, #O for interior vertices i EV, then the treediagonul matrix A with 
elements 

Aik = 
RijRji 

1+ z - 
jEN(i) dii 

is the inverse to R. 

{i, k) ~6, 
i=k, vi=l, {i, i} EG, 

1 
x, i=k, vi>2, 

otherwise 

Proof. First, the corollary to Theorem 3 implies that in order for R to be 
nonsingular all dii for {i, j} E& must be nonzero. Then the matrix is well 
defined, and we proceed to show it is the inverse of R. For vi = 1 and 
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so that for all i 

RiiR,, _ R,,R.. 
-- ‘+ dii 

2 =RiiAii, 
dij 

RiiRii 
R,,A,,=l+ 2 __ 

iEN 
d,, ’ 

It follows that 

(&4)ii=RiiAii+ x Rii =RiiAii-(R~iAii-l)=l. 
jEN(i) 

Next if i#k, and fE[i, k] is such that (i, k} E&, then 

If the Z-sum here is vacuous, then ok = 1 and 

whereas if the Z-sum is not vacuous, then Rkk ZO and 

Rii RikRkt R,k 
tRA)ikzRikAkk -Rikd,, - I~N(k, Ifi ~ - 2 

Rkk Ik d 

Hence RA is the identity matrix and the theorem is established. n 

THEOREM 5. lf A is a nonsingular treediagonal matrix, then its inverse 

satisfies the treeangle property. 
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Proof. We utilize the formula and results of Theorem 1 for ( A-‘)ii. Now 
Acli, il) is the product of the determinants associated with the separate 
disconnected components of r((i,i,j. Thus for j~[i, k] 

since the different disconnected components of the various graphs on the left- 
and right-hand sides of this equation are the same. Further one easily verifies 

and a similar relation involving parities. Hence using the formula of Theorem 
1, we obtain 

the desired result. 
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